Abstract

In this paper we propose to use utterance-level Permutation Invariant Training (uPIT) for speaker independent multi-talker speech separation and denoising, simultaneously. Specifically, we train deep bi-directional Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) using uPIT, for single-channel speaker independent multi-talker speech separation in multiple noisy conditions, including both synthetic and real-life noise signals. We focus our experiments on generalizability and noise robustness of models that rely on various types of a priori knowledge e.g. in terms of noise type and number of simultaneous speakers. We show that deep bi-directional LSTM RNNs trained using uPIT in noisy environments can improve the Signal-to-Distortion Ratio (SDR) as well as the Extended Short-Time Objective Intelligibility (ESTOI) measure, on the speaker independent multi-talker speech separation and denoising task, for various noise types and Signal-to-Noise Ratios (SNRs). Specifically, we first show that LSTM RNNs can achieve large SDR and ESTOI improvements, when evaluated using known noise types, and that a single model is capable of handling multiple noise types with only a slight decrease in performance. Furthermore, we show that a single LSTM RNN can handle both two-speaker and three-speaker noisy mixtures, without a priori knowledge about the exact number of speakers. Finally, we show that LSTM RNNs trained using uPIT generalize well to noise types not seen during training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.