Abstract
Integrated sensing and communication (ISAC), which allows individual radar and communication systems to share the same spectrum bands, is an emerging and promising technique for alleviating spectrum congestion problems. In this paper, we investigate how to exploit the inherent interference from strong radar signals to ensure the physical layer security (PLS) for the considered multi-user multi-input single-output (MU-MISO) communication and colocated multi-input multi-output (MIMO) radar coexistence system. In particular, with known eavesdroppers' channel state information (CSI), we propose to jointly design the transmit beamformers of communication and radar systems to minimize the maximum eavesdropping signal-to-interference-plus-noise ratio (SINR) on multiple legitimate users, while guaranteeing the communication quality-of-service (QoS) of legitimate transmissions, the requirement of radar detection performance, and the transmit power constraints of both radar and communication systems. When eavesdroppers' CSI is unavailable, we develop a joint artificial noise (AN)-aided transmit beamforming design scheme, which utilizes residual available power to generate AN for disrupting malicious receptions as well as satisfying the requirements of both legitimate transmissions and radar target detection. Extensive simulations verify the advantages of the proposed joint beamforming designs for ISAC systems on secure transmissions and the effectiveness of the developed algorithms.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have