Abstract

Photon-counting detector CT (PCD-CT) is a revolutionary technology in decades in the field of CT. Its potential benefits in lowering noise, dose reduction, and material-specific imaging enable completely new clinical applications. Spectral reconstruction of basis material maps requires knowledge of the x-ray spectrum and the spectral response calibration of the detector. However, spectrum estimation errors caused by inaccurate energy threshold calibration will degrade the accuracy of the reconstructions. Existing spectrum estimation methods are not adequately modeled for bias in energy threshold position. Besides, directly solving a big number of variables of the pixel-wise effective spectra for PCD is an ill-conditioned problem so that stable solution is hardly achievable. In this paper, we assumed the effective spectra variation across the detector mainly comes from the calibration error in the energy threshold positions as well as the intrinsic threshold distribution. We propose a joint reconstruction and spectrum refinement algorithm (JoSR) that introduces an innovative spectrum model based on non-negative matrix factorization (NMF) to significantly reduce the dimension of unknowns so that makes the problem well-conditioned. The polychromatic spectral imaging model and the basis material decomposition method together form an optimization objective. The proximal regularized block coordinate descent algorithm is adopted to deal with the non-convex optimization problem to ensure convergence. Simulation studies and experiments on a laboratory PCD-CT system validated the proposed JoSR method. The results demonstrate its advantages on image quality and quantitative accuracy over other state-of-the-art methods in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call