Abstract
Throughput of a manufacturing process depends on the effectiveness of equipment maintenance, and the availability of spare(service) parts. This paper addresses a joint production and spare part inventory control strategy driven by condition based maintenance(CBM) for a piece of manufacturing equipment. Specifically, a critical unit is continuously monitored for performance degradation during operation. The amount of degradation is utilized to initiate replacement actions in conjunction with spare part inventory control under both production lot size, and due date constraints. A degradation limit maintenance policy is combined with a base stock spare part inventory control policy to manage the manufacturing process. The objectives are to minimize the spare part inventory, and the expected total operating cost. Constrained least squares approximation, and simulation-based optimization are utilized, in a heuristic two-step approach, to determine the optimal base-stock level of spare parts, along with the preventive maintenance threshold. The resulting joint decision ascertains the allowed stockout probability for spare parts, while incurring the minimal operating cost for the required production within a fixed production duration. A case study of an automotive engine manufacturing process is provided to demonstrate the proposed decision-making methodology in practical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.