Abstract

In this paper, a novel model for turbulent premixed combustion in the corrugated flamelet regime is presented, which is based on transporting a joint probability density function (PDF) of velocity, turbulence frequency and a scalar vector. Due to the high dimensionality of the corresponding sample space, the PDF equation is solved with a Monte-Carlo method, where individual fluid elements are represented by computational particles. Unlike in most other PDF methods, the source term not only describes reaction rates, but accounts for “ignition” of reactive unburnt fluid elements due to propagating embedded quasi laminar flames within a turbulent flame brush. Unperturbed embedded flame structures and a constant laminar flame speed (as expected in the corrugated flamelet regime) are assumed. The probability for an individual particle to “ignite” during a time step is calculated based on an estimate of the mean flame surface density (FSD), latter gets transported by the PDF method. Whereas this model concept has recently been published [21], here, a new model to account for local production and dissipation of the FSD is proposed. The following particle properties are introduced: a flag indicating whether a particle represents the unburnt mixture; a flame residence time, which allows to resolve the embedded quasi laminar flame structure; and a flag indicating whether the flame residence time lies within a specified range. Latter is used to transport the FSD, but to account for flame stretching, curvature effects, collapse and cusp formation, a mixing model for the residence time is employed. The same mixing model also accounts for molecular mixing of the products with a co-flow. To validate the proposed PDF model, simulation results of three piloted methane-air Bunsen flames are compared with experimental data and very good agreement is observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call