Abstract

In the communication-constrained operating environment, a unmanned aerial vehicle (UAV) needs to plan a feasible path from the starting point to the endpoint while planning the node deployment location for multi-hop communication to establish an information pathway. In this study, a new algorithm was designed for joint path and multi-hop communication node location planning in cluttered environments based on rapidly-exploring random trees star (RRT*) algorithm. The maximum communication distance constraint between nodes was obtained based on the signal-free propagation model, whereas the communication node loss and path loss were established as joint optimization objectives. In bidirectional random tree growth, the structure of the trees was optimized according to the value of the loss function, and optimal path and node location planning were finally achieved through continuous growth and iteration. When tested in different complexity-barrier environments and compared to RRT*, Informed-RRT*, and IB-RRT* algorithms, the paths in the planning results of the new algorithm are close to those of the comparison algorithms; however, the number of nodes decreases significantly, which proves the effectiveness of the newly proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.