Abstract

Deep learning methods are emerging as powerful alternatives for compressed sensing MRI to recover images from highly undersampled data. Unlike compressed sensing, the image redundancies that are captured by these models are not well understood. The lack of theoretical understanding also makes it challenging to choose the sampling pattern that would yield the best possible recovery. To overcome these challenges, we propose to optimize the sampling patterns and the parameters of the reconstruction block in a model-based deep learning framework. We show that the joint optimization by the model-based strategy results in improved performance than direct inversion CNN schemes due to better decoupling of the effect of sampling and image properties. The quantitative and qualitative results confirm the benefits of joint optimization by the model-based scheme over the direct inversion strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.