Abstract

Modern MRI schemes, which rely on compressed sensing or deep learning algorithms to recover MRI data from undersampled multichannel Fourier measurements, are widely used to reduce the scan time. The image quality of these approaches is heavily dependent on the sampling pattern. We introduce a continuous strategy to optimize the sampling pattern and the network parameters jointly. We use a multichannel forward model, consisting of a non-uniform Fourier transform with continuously defined sampling locations, to realize the data consistency block within a model-based deep learning image reconstruction scheme. This approach facilitates the joint and continuous optimization of the sampling pattern and the CNN parameters to improve image quality. We observe that the joint optimization of the sampling patterns and the reconstruction module significantly improves the performance of most deep learning reconstruction algorithms. The source code is available at https://github.com/hkaggarwal/J-MoDL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.