Abstract

This paper proposes a novel fusion of an inertial measurement unit (IMU) and stereo camera method based on direct sparse odometry (DSO) and stereo DSO. It jointly optimizes all model parameters within a sliding window, including the inverse depth of all selected pixels and the internal or external camera parameters of all keyframes. The vision part uses a photometric error function that optimizes 3D geometry and camera pose in a combined energy functional. The proposed algorithm uses image blocks to extract neighboring image features and directly forms measurement residuals in the image intensity space. A fixed-baseline stereo camera solves scale drift. IMU information is accumulated between several frames using manifold pre-integration and is inserted into the optimization as additional constraints between keyframes. The scale and gravity inserted are incorporated into the stereo visual inertial odometry model and are optimized together with other variables such as poses. The experimental results show that the tracking accuracy and robustness of the proposed method are superior to those of the state-of-the-art fused IMU method. In addition, compared with previous semi-dense direct methods, the proposed method displays a higher reconstruction density and scene recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.