Abstract
In recent years, unmanned aerial vehicles (UAVs) have been applied in many fields owing to their mature flight control technology and easy-to-operate characteristics. No doubt, these UAV-related applications rely heavily on location information provided by the positioning system. Most UAVs nowadays use a global navigation satellite system (GNSS) to obtain location information. However, this outside-in 3rd party positioning system is particularly susceptible to environmental interference and cannot be used in indoor environments, which limits the application diversity of UAVs. To deal with this problem, in this paper, a stereo-based visual simultaneous localization and mapping technology (vSLAM) is applied. The presented vSLAM algorithm fuses onboard inertial measurement unit (IMU) information to further solve the navigation problem in an unknown environment without the use of a GNSS signal and provides reliable localization information. The overall visual positioning system is based on the stereo parallel tracking and mapping architecture (S-PTAM). However, experiments found that the feature-matching threshold has a significant impact on positioning accuracy. Selection of the threshold is based on the Hamming distance without any physical meaning, which makes the threshold quite difficult to set manually. Therefore, this work develops an online adaptive matching threshold according to the keyframe poses. Experiments show that the developed adaptive matching threshold improves positioning accuracy. Since the attitude calculation of the IMU is carried out based on the Mahony complementary filter, the difference between the measured acceleration and the gravity is used as the metric to online tune the gain value dynamically, which can improve the accuracy of attitude estimation under aggressive motions. Moreover, a static state detection algorithm based on the moving window method and measured acceleration is proposed as well to accurately calculate the conversion mechanism between the vSLAM system and the IMU information; this initialization mechanism can help IMU provide a better initial guess for the bundle adjustment algorithm (BA) in the tracking thread. Finally, a performance evaluation of the proposed algorithm is conducted by the popular EuRoC dataset. All the experimental results show that the developed online adaptive parameter tuning algorithm can effectively improve the vSLAM accuracy and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.