Abstract

When conducting recurrent event data analysis, it is common to assume that the covariate processes are observed throughout the follow-up period. In most applications, however, the values of time-varying covariates are only observed periodically rather than continuously. A popular ad-hoc approach is to carry forward the last observed covariate value until it is measured again. This simple approach, however, usually leads to biased estimation. To tackle this problem, we propose to model the covariate effect on the risk of the recurrent events through jointly modeling the recurrent event process and the longitudinal measures. Despite its popularity, estimation of the joint model with binary longitudinal measurements remains a challenge, because the standard linear mixed effects model approach is not appropriate for binary measures. In this paper, we postulate a Markov model for the binary covariate process and a random-effect proportional intensity model for the recurrent event process. We use a Markov chain Monte Carlo algorithm to estimate all the unknown parameters. The performance of the proposed estimator is evaluated via simulations. The methodology is applied to an observational study designed to evaluate the effect of Group A streptococcus on pharyngitis among school children in India.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.