Abstract

Scholarly documents are sources of information on research topics written by academic experts. Topic drift in such scholarly documents is usually linked with the contextual variation in the title or abstract or entire document over time. However, topic distribution over words in different components of the document is non-uniform due to the varying impact of authors and citations, and their contribution to drift must be processed accordingly. This paper builds a model that distinguishes the context of a research document based on the author and citation by incorporating relation between topic, author, citation, word and time in the form of author context vector and citation context vector. To infer posterior probabilities, a parallel author cited_author topic model is presented. Continuous time bivariate Brownian motion model is employed for deducing the evolving bivariate topic parameters, specific to the author and citation. The word, topic pairs from the author and citation context vectors are jointly learned to yield topical word embeddings over time conditioned on author and citation contexts. When evaluated with NIPS and business journals datasets, the proposed model identifies topical variations over time precisely compared to other methods. It is found that broadening of topic happens due to the author context, and topic deviation is mainly caused by citation context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.