Abstract
Abstract. Paleoclimatic and paleoenvironmental reconstructions are fundamentally uncertain because no proxy is a direct record of a single environmental variable of interest; all proxies are indirect and sensitive to multiple forcing factors. One productive approach to reducing proxy uncertainty is the integration of information from multiple proxy systems with complementary, overlapping sensitivity. Mostly, such analyses are conducted in an ad hoc fashion, either through qualitative comparison to assess the similarity of single-proxy reconstructions or through step-wise quantitative interpretations where one proxy is used to constrain a variable relevant to the interpretation of a second proxy. Here we propose the integration of multiple proxies via the joint inversion of proxy system and paleoenvironmental time series models in a Bayesian hierarchical framework. The “Joint Proxy Inversion” (JPI) method provides a statistically robust approach to producing self-consistent interpretations of multi-proxy datasets, allowing full and simultaneous assessment of all proxy and model uncertainties to obtain quantitative estimates of past environmental conditions. Other benefits of the method include the ability to use independent information on climate and environmental systems to inform the interpretation of proxy data, to fully leverage information from unevenly and differently sampled proxy records, and to obtain refined estimates of proxy model parameters that are conditioned on paleo-archive data. Application of JPI to the marine Mg∕Ca and δ18O proxy systems at two distinct timescales demonstrates many of the key properties, benefits, and sensitivities of the method, and it produces new, statistically grounded reconstructions of Neogene ocean temperature and chemistry from previously published data. We suggest that JPI is a universally applicable method that can be implemented using proxy models of wide-ranging complexity to generate more robust, quantitative understanding of past climatic and environmental change.
Highlights
Paleoenvironmental reconstructions, including reconstructions of past climate, provide a powerful tool to document the sensitivity of Earth systems to forcing, characterize the range of natural responses associated with different modes of global change, and identify key mechanisms governing these responses
We begin by describing an implementation of Joint Proxy Inversion” (JPI) for the widely used foraminiferal Mg/Ca and δ18O multi-proxy system, and we present results demonstrating many of the merits and challenges of this approach
The 95 % credible intervals (CIs) estimated from JPI average 2.4 ◦C and 0.6 ‰, which is similar to the uncertainty bounds provided by L15 based on iterative estimation using different calibration functions
Summary
Paleoenvironmental reconstructions, including reconstructions of past climate, provide a powerful tool to document the sensitivity of Earth systems to forcing, characterize the range of natural responses associated with different modes of global change, and identify key mechanisms governing these responses. Throughout the vast majority of the planet’s history, estimates of environmental conditions can only be obtained through proxy reconstructions. The word proxy is derived from the Latin word procurare, which in this context means “to care” or “to manage”. The measurable physico-chemical quantity in sediments is “managed” into a parameter we want to reconstruct. The result is an indirect estimate of past environmental conditions, often subject to substantial, sometimes poorly characterized, uncertainty
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have