Abstract

This paper deals with a novel generalization of classical blind source separation (BSS) in two directions. First, relaxing the constraint that the latent sources must be statistically independent. This generalization is well-known and sometimes termed independent subspace analysis (ISA). Second, jointly analyzing several ISA problems, where the link is due to statistical dependence among corresponding sources in different mixtures. When the data are one-dimensional, i.e., multiple classical BSS problems, this model, known as independent vector analysis (IVA), has already been studied. In this paper, we combine IVA with ISA and term this new model joint independent subspace analysis (JISA). We provide full performance analysis of JISA, including closed-form expressions for minimal mean square error (MSE), Fisher information and Cramer–Rao lower bound, in the separation of Gaussian data. The derived MSE applies also for non-Gaussian data, when only second-order statistics are used. We generalize previously known results on IVA, including its ability to uniquely resolve instantaneous mixtures of real Gaussian stationary data, and having the same arbitrary permutation at all mixtures. Numerical experiments validate our theoretical results and show the gain with respect to two competing approaches that either use a finer block partition or a different norm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.