Abstract

AbstractIn this paper, we present a quasi-Newton (QN) algorithm for joint independent subspace analysis (JISA). JISA is a recently proposed generalization of independent vector analysis (IVA). JISA extends classical blind source separation (BSS) to jointly resolve several BSS problems by exploiting statistical dependence between latent sources across mixtures, as well as relaxing the assumption of statistical independence within each mixture. Algebraically, JISA based on second-order statistics amounts to coupled block diagonalization of a set of covariance and cross-covariance matrices, as well as block diagonalization of a single permuted covariance matrix. The proposed QN algorithm achieves asymptotically the minimal mean square error (MMSE) in the separation of multidimensional Gaussian components. Numerical experiments demonstrate convergence and source separation properties of the proposed algorithm.KeywordsBlind source separationIndependent vector analysisIndependent subspace analysisJoint block diagonalization

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.