Abstract
Fossil-fuel based electricity generation produces the largest proportion of human-related carbon pollution in the United States. Hence, fuel choices by steam plants are key determinants of the industry's impact on national and global greenhouse gas emissions, and key foci for climate change policy. Yet, little research has been done to examine the economic and environmental tradeoffs among the different types of fuels that are used by these plants. This paper applies a Data Envelopment Analysis procedure that incorporates the materials balance principle to estimate the allocations of coal, gas and oil inputs that minimize carbon emissions and costs. Using EIA 906 and FERC 423 data, the paper estimates cost/carbon tradeoffs facing two sets of plants: those that use coal and gas inputs, and those that use coal, gas and oil inputs. Findings for our three-input sample show that there would be a 79% increase in cost for moving from the cost-efficient point to the carbon efficient point, while there would be a 38% increase in carbon for moving from the carbon efficient point to the cost-efficient point. These conclusions indicate that, in general, the gap between efficient cost and efficient environmental production is wide, and would require substantial policy intervention, technological change or market adjustment before it could be narrowed. However, our examination of individual plants shows that what is true in general is often not true for specific plants. Some plants that are currently less efficient than those on the production frontier could produce the same amount of electricity with less carbon output and less fuel input. Additionally, many plants on the production frontier could improve both cost and carbon efficiency by changing their mixture of fossil-fuel inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.