Abstract

Electrical load modeling and forecasting are critically important in the electrical network and smart grid. The sparse Bayesian Learning (SBL) algorithm can be utilized to model and forecast the electrical load behavior. The SBL algorithm can solve a sparse weight vector with respect to a kernel matrix for modeling electricity consumption. However, traditional SBL can only handle an electricity consumption record of one user at a time period. In this paper, we propose a joint SBL algorithm to model and forecast multi-users electricity consumption at multiple time periods. The spatial and historical similarity in multi-users electricity consumption records are exploited and integrated in the joint SBL algorithm for accurate prediction and good modeling. Experimental results based on real data show that the proposed joint SBL algorithm can produce much better prediction accuracy than the traditional SBL algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.