Abstract

Soils containing both veterinary antibiotics (VAs) and heavy metals necessitate effective remediation approaches, and microbial and molecular levels of the results should be further examined. Here, a novel material combining waste fungus chaff-based biochar (WFCB) and Herbaspirillum huttiense (HHS1) was established to immobilize copper (Cu) and zinc (Zn) and degrade oxytetracycline (OTC) and enrofloxacin (ENR). Results showed that the combined material exhibited high immobilization of Cu (85.5%) and Zn (64.4%) and great removals of OTC (41.9%) and ENR (40.7%). Resistance genes including tet(PB), tetH, tetR, tetS, tetT, tetM, aacA/aphD, aacC, aadA9, and czcA were reduced. Abundances of potential hosts of antibiotic resistance genes (ARGs) including phylum Proteobacteria and genera Brevundimonas and Rhodanobacter were altered. Total phosphorus and pH were the factors driving the VA degrading microorganisms and potential hosts of ARGs. The combination of WFCB and HHS1 can serve as an important bioresource for immobilizing heavy metals and removing VAs in the contaminated soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.