Abstract

We consider the problem of automatically recognizing a human face from its multi-view images with unconstrained poses. We formulate the multi-view face recognition task as a joint sparse representation model and take advantage of the correlations among the multiple views for face recognition using a novel joint dynamic sparsity prior. The proposed joint dynamic sparsity prior promotes shared joint sparsity patterns among the multiple sparse representation vectors at class-level, while allowing distinct sparsity patterns at atom-level within each class to facilitate a flexible representation. Extensive experiments on the CMU Multi-PIE face database are conducted to verify the efficacy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.