Abstract
This paper presents a tracking algorithm for joint estimation of direction of arrival (DOA) and polarization parameters, which exhibit dynamic behavior due to the movement of signal source carriers. The proposed algorithm addresses the challenge of real-time estimation in multi-target scenarios with an unknown number. This algorithm is built upon the Multi-target Multi-Bernoulli (MeMBer) filter algorithm, which makes use of a sensor array called Circular Orthogonal Double-Dipole (CODD). The algorithm begins by constructing a Minimum Description Length (MDL) principle, taking advantage of the characteristics of the polarization-sensitive array. This allows for adaptive estimation of the number of signal sources and facilitates the separation of the noise subspace. Subsequently, the joint parameter Multiple Signal Classification (MUSIC) spatial spectrum function is employed as the pseudo-likelihood function, overcoming the limitations imposed by unknown prior information constraints. To approximate the posterior distribution of MeMBer filters, Sequential Monte Carlo (SMC) method is utilized. The simulation results demonstrate that the proposed algorithm achieves excellent tracking accuracy in joint DOA-polarization parameter estimation, whether in scenarios with known or unknown numbers of signal sources. Moreover, the algorithm demonstrates robust tracking convergence even under low Signal-to-Noise Ratio (SNR) conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.