Abstract

Joint diagonalization of several correlation matrices is a powerful tool for blind signal separation. The paper addresses the blind signal separation problem for the case where the source signals are non-stationary and/or non-white, and the sensors are possibly noisy. We present cost functions for jointly diagonalizing several correlation matrices. The corresponding gradients are derived and used in gradient-based joint-diagonalization algorithms. Several variations are given, depending on the desired properties of the separation matrix, e.g., unitary separation matrix. These constraints are either imposed by adding a penalty term to the cost function or by projecting the gradient onto the desired manifold. The performance of the proposed joint-diagonalization algorithm is verified by simulating a blind signal separation application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.