Abstract
This paper studies the problem of blind separation of convolutively mixed source signals on the basis of the joint diagonalization (JD) of power spectral density matrices (PSDMs) observed at the output of the separation system. Firstly, a general framework of JD-based blind source separation (BSS) is reviewed and summarized. Special emphasis is put on the separability conditions of sources and mixing system. Secondly, the JD-based BSS is generalized to the separation of convolutive mixtures. The definition of a time and frequency dependent characteristic matrix of sources allows us to state the conditions under which the separation of convolutive mixtures is possible. Lastly, a frequency-domain approach is proposed for convolutive mixture separation. The proposed approach exploits objective functions based on a set of PSDMs. These objective functions are defined in the frequency domain, but are jointly optimized with respect to the time-domain coefficients of the unmixing system. The local permutation ambiguity problems, which are inherent to most frequency-domain approaches, are effectively avoided with the proposed algorithm. Simulation results show that the proposed algorithm is valid for the separation of both simulated and real-word recorded convolutive mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.