Abstract
Fifth generation (5G) communication network is anticipated to satisfy the need for higher data rates, less latency, ubiquitous connectivity with minimum consumption of energy and acceptable quality of Service (QoS). The massive MIMO and heterogeneous network (HetNet) has evolved as a promising technology to address the aforementioned challenges. In the proposed framework, the massive MIMO technology at the macro base station and full duplex (FD) technology enabled at the small cell base station in HetNet are investigated. An optimal antenna selection strategy, user association (UA), and power allocation (PA) in a massive MIMO‐based HetNet with FD‐enabled small cells are proposed to optimize system sum rate. Initially, the objective function of the optimization problem is nonconvex and a mixed integer nonlinear programming problem. Then, the solution is obtained by transforming the problem into convex problem utilizing Lagrangian decomposition. Simulation results manifest the effect of the number of base station antennas, number of small cell base stations, self‐interference cancellation factor, and channel state information on system sum rate. Moreover, it is evident that the propounded algorithm is effective in terms of optimizing the system sum rate when compared to the conventional maximum signal‐ to ‐ interference ‐ plus ‐noise ‐ ratio (SINR) algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have