Abstract
The layer-based additive manufacturing (AM) processes can directly fabricate sub-systems with multiple components during the building process. Novel applications in robotics and many others have been demonstrated by removing the need of component assembly. However, the AM processes also have inferior accuracy compared to the Computer Numerical Control (CNC) machining process. Hence the joint clearance that can be achieved in a 3D-printed mechanism is large. This would significantly limit the use of AM in directly building movable sub-systems without further assembly operations after the building process. To reduce the joint clearance, we present a novel joint design by considering the fabrication limitation of AM processes. A novel marker structure is developed for various types of joints including cylindrical pin joints. The relation of the marker design and the rotation performance of the 3D-printed joint is modeled. Test cases based on the Stereolithography Apparatus (SLA) process have been performed to verify the effectiveness of the developed joint design. Compared to the traditional pin joint design, the new design can achieve a smaller clearance during rotation while still be able to be fabricated by the SLA process. Consequently its rotation performance can be improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.