Abstract
Impulse noise (IN) widely exists in many communication systems, which seriously affects the performance of OFDM communication systems. A joint channel and IN estimation method based on all subcarriers is designed. This method uses a sparse Bayesian learning (SBL) algorithm incorporating forward–backward Kalman filter (FB-Kalman) to tackle the problem of joint channel and IN estimation and data detection for OFDM systems. Firstly, the channel impulse response and IN are regarded as unknown sparse vectors, and a SBL framework using all subcarriers is proposed to estimate the unknown vector. The SBL theory is used based on the prior distribution of variables, and then the forward–backward joint system is established, which applies the data detection simultaneously. We also propose the FB-Kalman implementation algorithm by using the expectation maximization updates. Explicit expressions of mean and covariance matrix of the posterior distribution are derived in the E-step. Simulation results show that the proposed algorithm improves the normalized mean square error and bit error rate performance of OFDM system in the presence of IN communication environment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.