Abstract
Radar network configuration and power allocation are of great importance in military applications, where the entire surveillance area needs to be searched under resource budget constraints. To pursue the joint antenna placement and power allocation (JAPPA) optimization, this paper develops a JAPPA strategy to improve target detection performance in a widely distributed multiple-input and multiple-output (MIMO) radar network. First, the three variables of the problem are incorporated into the Neyman–Pearson (NP) detector by using the antenna placement optimization and the Lagrange power allocation method. Further, an improved iterative greedy dropping heuristic method based on a two-stage local search is proposed to solve the NP-hard issues of high-dimensional non-linear integer programming. Then, the sum of the weighted logarithmic likelihood ratio test (LRT) function is constructed as optimization criteria for the JAPPA approach. Numerical simulations and the theoretical analysis confirm the superiority of the proposed algorithm in terms of achieving effective overall detection performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.