Abstract

Additive manufacturing (AM) has captured the imagination of the manufacturing community and has revolutionary potential across a number of energy applications. One particular challenge for these applications is the large size of metal AM components that are compelling to be printed. This necessitates welding and joining processes to integrate metal AM parts into larger assemblies, as well as the ability to repair and re-work metal AM parts that may have defects. This work characterizes the microstructural and mechanical properties of metal parts produced through laser-based powder bed fusion (L-PBF) and electron beam powder bed fusion (EB-PBF) and then subsequently welded. The results show possibilities for gas tungsten arc welding (GTAW) and friction stir welding (FSW) as feasible rework and repair solutions for AM-printed AlSi10Mg, Ni 718, and Ti64. More research attention to this area will improve the viability of L-PBF and electron beam melting AM technology for energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.