Abstract

This paper presents a model to evaluate and analyze the costs of joining hybrid (copper-aluminum) busbars when different production processes are deployed. The process-based cost model (PBCM) is built upon the subdivision of the production cycle in three different stages related with the fabrication or purchase of auxiliary joining elements, preparation of the individual copper and aluminum conductors, and final joining of the hybrid busbars. The total cost per hybrid busbar is obtained by converting the major physical, human, and financial resources associated with the production cycle into itemized costs that make use of the expenses in materials, labor working hours, number and usage time of machines and tools, among other production costs. Application of the PBCM is illustrated with three different joining processes and enriched with a life cycle assessment (LCA) focused on the environmental performance of hybrid busbars throughout its fabrication, service use and end of life. The combined economic and environmental sustainability analysis of joining hybrid busbars allows concluding that despite conventional fastening being the cheaper process it has the highest environmental impact due to the use of bolts, nuts and washers made from galvanized medium carbon steel. Injection lap riveting arises to be the most well-balanced process in terms of production cost and environmental impact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.