Abstract

A post-classifying fuzzy-neural approach is proposed in this study for estimating the remaining cycle time of each job in a wafer fabrication plant, which has seldom been investigated in past studies but is a critical task for the wafer fabrication plant. In the methodology proposed, the fuzzy back-propagation network (FBPN) approach for job cycle time estimation is modified with the proportional adjustment approach to estimate the remaining cycle time instead. Besides, unlike existing cycle time estimation approaches, in the methodology proposed a job is not preclassified but rather post-classified after the estimation error has been generated. For this purpose, a back-propagation network is used as the post-classification algorithm. To evaluate the effectiveness of the methodology proposed, production simulation is used in this study to generate some test data. According to experimental results, the accuracy of estimating the remaining cycle time could be improved by up to 64 per cent with the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.