Abstract
This paper presents a fuzzy-neural-network-based fluctuation smoothing rule to further improve the performance of scheduling jobs with various priorities in a wafer fabrication plant. The fuzzy system is modified from the well-known fluctuation smoothing policy for a mean cycle time (FSMCT) rule with three innovative treatments. First, the remaining cycle time of a job is estimated by applying an existing fuzzy-neural-network-based approach to improve the estimation accuracy. Second, the components of the FSMCT rule are normalized to balance their importance. Finally, the division operator is applied instead of the traditional subtraction operator in order to magnify the difference in the slack and to enhance the responsiveness of the FSMCT rule. To evaluate the effectiveness of the proposed methodology, production simulation is applied to generate some test data. According to the experimental results, the proposed methodology outperforms six existing approaches in the reduction of the average cycle times. In addition, the new rule is shown to be a Pareto optimal solution for scheduling jobs in a semiconductor manufacturing plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.