Abstract
The stress activated protein kinase pathway culminates in c-Jun phosphorylation mediated by the Jun Kinases (JNKs). The role of the JNK pathway in sympathetic neuronal death is unclear in that apoptosis is not inhibited by a dominant negative protein of one JNK kinase, SEK1, but is inhibited by CEP-1347, a compound known to inhibit this overall pathway but not JNKs per se. To evaluate directly the apoptotic role of the JNK isoform that is selectively expressed in neurons, JNK3, we isolated sympathetic neurons from JNK3-deficient mice and quantified nerve growth factor (NGF) deprivation-induced neuronal death, oxidative stress, c-Jun phosphorylation, and c-jun induction. Here, we report that oxidative stress in neurons from JNK3-deficient mice is normal after NGF deprivation. In contrast, NGF-deprivation-induced increases in the levels of phosphorylated c-Jun, c-jun, and apoptosis are each inhibited in JNK3-deficient mice. Overall, these results indicate that JNK3 plays a critical role in activation of c-Jun and apoptosis in a classic model of cell-autonomous programmed neuron death.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have