Abstract

A numerical experiment is described which explores the relationship between upper-level potential vorticity advection and cyclogenesis on the leeward side of mountain barriers. A multilevel primitive equation model framed in isentropic coordinates is used to simulate the growth of a wave disturbance on the cold front associated with a preexisting “parent” cyclone. The effect of a mountain barrier placed in the path of the advancing cold front and the effect of an enhanced upper-level jet streak on the growth rate of the disturbance are investigated. Enhancement of the jet streak is accomplished by altering the geostrophic potential vorticity in a region upstream of the mountain barrier and solving for the corresponding man and geostrophic velocity field. The experiment suggests a strong connection between the intensity of the jet weak impinging on the barrier and the pressure fall in the lee. We also find that the strongest leeside pressure fall in this experiment is not accompanied by a conversion of available potential energy to kinetic energy. This suggests that geostrophic adjustment processes, rather than baroclinic instability, may cause the rapid initial growth of some, though possibly not all, lee cyclones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.