Abstract

Abstract Recently, Wireless Sensor Network (WSN) is often viewed with an oversized range of sensors that are structured and collaborate to gather and transmit information around the targets. As sensors may be positioned in harsh surroundings, it is critical for secure data transmission. Therefore, a dynamic routing path should be essential for WSN applications. In this paper, a Jellyfish Dynamic Routing Protocol (JDRP) for preserving location privacy and congestion avoidance with less delay guaranteed is proposed. With this routing technique, the complete sensor field is divided into different subdivisions and each subdivision elects a target area by computing its transmission distance. The backbone of the dynamic routing protocol consists of a virtual ring called bell nodes and a radial line called tentacle nodes employs more nodes to construct the network. The amount of radial line and radius of the virtual ring in a network are conjointly determined to ease the communication path from the node to sink. In this structure, the radial line paths are routed directionally and bell nodes are routed with angular directions probabilistically. From the routing path, the tentacle nodes collect the data to dynamic sink which will assure that the information is going to be collected with less delay and attacker cannot guess their positions. The experimental results show that the proposed JDRP method accomplishes enhanced performance in terms of energy consumption, packet delivery delay and lifetime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call