Abstract
Jarzynski equality and related fluctuation theorems can be formulated for various setups. Such an equality was recently derived for nonunitary quantum evolutions described by unital quantum operations, i.e., for completely positive, trace-preserving maps, which preserve the maximally mixed state. We analyze here a more general case of arbitrary quantum operations on finite systems and derive the corresponding form of the Jarzynski equality. It contains a correction term due to nonunitality of the quantum map. Bounds for the relative size of this correction term are established and they are applied for exemplary systems subjected to quantum channels acting on a finite-dimensional Hilbert space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.