Abstract

We study the energy extraction from and charging to a finite-dimensional quantum system by general quantum operations. We prove that the changes in energy induced by unital quantum operations are limited by the ergotropy and charging bounds for unitary quantum operations. This implies that, in order to break the ergotropy bound for unitary quantum operations, one needs to perform a quantum operation with feedback control. We also show that the ergotropy bound for unital quantum operations, applied to initial thermal equilibrium states, is tighter than the inequality representing the standard second law of thermodynamics without feedback control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.