Abstract

Simulation experiments were conducted to examine whether jarosite is decomposed and toxic products are produced under anaerobic microcosm wetland conditions. The results show that jarosite was stable under water inundation in the microcosm wetland for a period of at least 56 days when no organic substance was added. However, jarosite became increasingly unstable with increasing amount of added organic matter. This resulted in entry of ferrous Fe into the soil solutions. Concentration of other heavy metals in the leachates was extremely low except for Mn. This is attributed to the maintenance of a high pH in the microcosm wetlands, which might cause re-precipitation of originally jarosite-borne heavy metals, if any. No acute toxicity was observed for leachate from the control (non organic matter-added treatment). However, leachates from various organic matter-added treatments show varying degrees of toxicity to the test organism and soluble Fe was likely to be the dominant metal of potential toxicity. Atmospheric exposure of leachate led to oxidation of ferrous Fe and precipitation of iron hydroxide, which caused a drop in leachate pH. This, in turn, inhibited further oxidation of ferrous Fe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.