Abstract

Janus transition metal dichalcogenides with a built-in structural cross-plane asymmetry have recently emerged as a new class of two-dimensional materials with a large cross-plane dipole. By using the density functional theory calculation, we report the formation of different Schottky barriers for Janus PtSSe and graphene based van der Waals heterostructures, where the Schottky barrier height (SBH) and type of contact can be controlled by adjusting the interlayer distance, by applying an external electric field, and by having multiple layers of Janus PtSSe. It is found that the effects of tuning are more prominent for SPtSe/graphene as compared to SePtS/graphene. Besides, a transition from n-type Schottky contact to p-type Schottky contact and to Ohmic contact is also observed in the SPtSe/Gr heterostructure for different SPtSe stackings from 1 layer, to 2- and 3-layers, respectively. Our findings indicate that the SPtSe/graphene heterostructure is a suitable candidate for applications that require a tunable SBH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.