Abstract

Cloud-based data-intensive applications have to process high volumes of transactional and analytical requests on large-scale data. Businesses base their decisions on the results of analytical requests, creating a need for real-time analytical processing. We propose Janus, a hybrid scalable cloud datastore, which enables the efficient execution of diverse workloads by storing data in different representations. Janus manages big datasets in the context of datacenters, thus supporting scaling out by partitioning the data across multiple servers. This requires Janus to efficiently support distributed transactions. In order to support the different datacenter requirements, Janus also allows diverse partitioning strategies for the different representations. Janus proposes a novel data movement pipeline to continuously ensure up to date data between the different representations. Unlike existing multi-representation storage systems and Change Data Capture (CDC) pipelines, the data movement pipeline in Janus supports partitioning and handles both distributed transactions and diverse partitioning strategies. In this paper, we focus on supporting Online Transaction Processing (OLTP) and Online Analytical Processing (OLAP) workloads, and hence use row and column-oriented representations, which are the most efficient representations for these workloads. Our evaluations over Amazon AWS illustrate that Janus can provide real-time analytical results, in addition to processing high-throughput transactional workloads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.