Abstract
Demand for enterprise data warehouse solutions to support real-time Online Transaction Processing (OLTP) queries as well as long-running Online Analytical Processing (OLAP) workloads is growing. Greenplum database is traditionally known as an OLAP data warehouse system with limited ability to process OLTP workloads. In this paper, we augment Greenplum into a hybrid system to serve both OLTP and OLAP workloads. The challenge we address here is to achieve this goal while maintaining the ACID properties with minimal performance overhead. In this effort, we identify the engineering and performance bottlenecks such as the under-performing restrictive locking and the two-phase commit protocol. Next we solve the resource contention issues between transactional and analytical queries. We propose a global deadlock detector to increase the concurrency of query processing. When transactions that update data are guaranteed to reside on exactly one segment we introduce one-phase commit to speed up query processing. Our resource group model introduces the capability to separate OLAP and OLTP workloads into more suitable query processing mode. Our experimental evaluation on the TPC-B and CH-benCHmark benchmarks demonstrates the effectiveness of our approach in boosting the OLTP performance without sacrificing the OLAP performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.