Abstract
We use lattice-Boltzmann molecular dynamics (LBMD) simulations to study the compression of a confined polymer immersed in a fluid and pushed by a large spherical colloid with a diameter comparable to the channel width. We examined the chain's deformation with both purely repulsive and weakly attractive Lennard-Jones (LJ) potentials applied between the monomers. The sphere's velocity was varied over 3 orders of magnitude. The chain is in a non-dense state at low pushing velocities for both repulsive and attractive monomer interactions. When the velocity of the spherical colloid exceeds a threshold v*, the back end of the chain transitions to a high density state with low mean square monomer displacement (MSD) values. The front end, however, remains in a non-dense state with high MSD indicating a pseudo two-state coexistence. This crossover is also revealed through volume per monomer and MSD as a function of the sphere's velocity. We also studied polymer dynamics by investigating folding events at different times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.