Abstract

Background Mesenchymal stem cells (MSCs) can differentiate into cardiomyocytes if an appropriate cellular environment is provided. Notch signals exchanged between neighboring cells through the Notch receptor can eventually dictate cell differentiation. In our study, we show that MSC differentiation into cardiomyocytes is dependent on the Notch signal. Methods We created a myocardial infarction model in rat by coronary ligation, administered direct intramyocardial injection of DAPI-labeled MSC immediately, and observed the differentiation of MSCs after 14 days by immunofluorescence staining against troponin T. We cultured MSCs and cardiomyocytes in four ways, respectively, in vitro. (1) MSCs cocultured with cardiomyocytes obtained from neonatal rat ventricles in a ratio of 1:10. (2) The two types of cells were cultured in two chambers separated by a semipermeable membrane as indirect coculture group. (3) Notch receptor-soluble jagged1 protein was added to indirect coculture group. (4) Both jagged1 protein and γ-secretase inhibitor-DAPT were added to indirect coculture group. Two weeks later, we observed the differentiation percentage, respectively, by immunofluorescence staining. Results We found the differentiation of MSCs which were close to cardiomyocytes in vivo. The differentiation percentage of the four cell culture group was 30.13 ± 2.16%, 12.52 ± 1.18%, 26.33 ± 2.20%, and 13.08 ± 1.15%. Conclusions MSCs can differentiate into cardiomyocytes in vitro and in vivo if a cardiomyocyte microenvironment is provided. 2. Cell-to-cell interaction is very important for the differentiation of MSCs into cardiomyocytes. 3. Jagged1 protein can activate Notch signal and enhance the differentiation of MSC into cardiomyocyte, while the effect can be inhibited by DAPT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.