Abstract

This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication (EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newton-generalized minimal residual (GMRES) from the Krylov subspace method (KSM). Acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner. Profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings. The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call