Abstract

J aggregate of a water-soluble porphyrin, 5,10,15,20-tetra(4-sulfophenyl)porphyrin (H2TPPS44−), formed in acidified aqueous solutions, exhibits sharp and intense absorption bands at 491 and 707 nm. These characteristic transitions, J bands, are of linear oscillators polarized in the long axis of rodlike aggregate. The molecules in the aggregate stack so as to lift the degeneracy of the porphyrin planar oscillator excited states. Measurements of flow-induced linear dichroism, circular dichroism, magnetic circular dichroism, as well as polarized fluorescence excitation spectra provide evidence not only of linear oscillator character of the intense J band at 491 nm, but also of presence of another diffuse absorption band around at 420 nm polarized in the short axis of the aggregate, which is the counterpart of the 491 nm band of porphyrin Soret origin. Extrinsic circular dichroism is induced upon addition of L-tartaric acid or by mechanical swirling flow in the period of aggregate growth. Resonance Raman spectrum of the aggregate is rather similar to that of the monomeric diacid except the polarization. The observed shifts of Raman peaks to lower frequency are ascribed to a deformation of porphyrin moiety and/or hydrophobic interaction between component molecules in the aggregate. The sharp and intense J bands polarized in the long axis of aggregate cannot be well described without taking into account the participation of interporphyrin charge resonance excited states, whereas the broadbands polarized in the short axis are exclusively ascribed to exciton resonance excited states. The porphyrin J band is characterized as sustaining an exchange narrowing by fast migration of excitation over the whole system of chromophores in a linear array of the porphyrin planar oscillators in slipped face-to-face stacking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.