Abstract

Plumes fires are characterized by a turbulent nature with a large number of different scales. LES is used to solve the largest structures and to model the smallest ones. Grid size and time steps become decisive to place a limit between solved and modelled turbulence. A spectral analysis, both in frequency and wavenumber domain of the specific turbulent kinetic energy is an instrument to check for the information investigated. Unfortunately, the spectra in the wavenumber domain can be difficult to achieve adequately, because the specific turbulent kinetic energy values should be available in many points. This issue can be overcome by identifying a correlation law between frequencies and wavenumbers. An approach to identify this correlation law can be to adopt the IWC method. Here, for a test case of a turbulent reacting plume of burning propane, specific turbulent kinetic energy is analysed both in frequency and wavenumber and a correlation law between them is identified by using the IWC method. A study has been performed to evaluate the grid dependency of the specific turbulent kinetic energy spectra, by assessing the extension of the Kolmogorov power law region. The correlation results are discussed and compared with the Taylor’s hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call