Abstract
The intramolecular dynamics of vibrational levels (up to v = 5) of the ν1 mode in the (CF3)2CCO molecule that is induced by a multiphoton selective excitation of this mode by resonant femtosecond IR radiation has been studied. The times of intramolecular vibrational energy redistribution (IVR) from each vibrational level to remaining molecular modes have been determined. In accordance with theoretical predictions, a decrease in the IVR time with increasing quantum number v has been observed for the first time. A sharp decrease in the IVR time (down to 1.5 ps) at a wavelength of 2129 cm-1, corresponding to the v = 3 → v = 4 vibrational transition, is revealed. It has been shown that, with a negative chirp of a femtosecond radiation pulse, the population of high-lying vibrational levels of the ν1 mode increases significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.