Abstract

Current-voltage characteristics and DC electrical conductivity were studied for Ge30-xSe70Snx (x = 8, 11, 14, 17 and 20) glassy thin pellets of diameter 12mm and thickness 1mm prepared under a constant load of 5 tons using a well-known melt quenching technique in bulk as a function of composition. The I-V characteristics were recorded at room temperature as well as elevated temperatures up to 300?C. The experimental data suggests that glass containing 20 at.% of Sn has the minimum resistance allowing maximum current through the sample as compared to other counterparts of the series. Therefore, DC conductivity is found to increase with increasing Sn concentration. Composition dependence of DC conductivity is discussed in terms of the bonding between Se and Sn. Plots between ln I and V1/2 provide linear relationship for both low and high voltage range. These results have been explained through the Pool-Frenkel mechanism. The I-V characteristics show ohmic behaviour in the low voltage range and this behaviour turns to non-ohmic from ohmic in the higher voltage range due to voltage induced temperature effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call