Abstract

Green-ripe (Gr) tomato carries a dominant mutation and yields a nonripening fruit phenotype. The mutation results from a 334 bp deletion in a gene of unknown function at the Gr locus. The putative influence of Gr gene-deletion mutation on biochemical changes underlying the nonripening phenotype remains largely unknown. Respiration of Gr fruit was found to be reduced at mature green and breaker stage of ripening, while the fruit softening was dramatically prolonged. We studied the proteome of Gr mutant fruit using high-throughput iTRAQ and high-resolution mass spectrometry and identified 43 proteins representing 43 individual genes as potential influence-targets of Gr mutated fruit. The identified proteins are involved in several ripening-related pathways including cell-wall metabolism, photosynthesis, oxidative phosphorylation, carbohydrate and fatty acid metabolism, protein synthesis, and processing. Affected protein levels are correlated with the corresponding gene transcript levels. The modulation in the accumulation levels of PI(U1)P, PGIP, and PG2 supported the delayed softening phenotype of the Gr fruit. Further investigation in GR gene-silencing fruit ascertained the doubtless modulation of these targets by the deletion mutation of GR gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.