Abstract

Mast cells can support the replication of influenza A virus, although how this occurs is poorly understood. In the present study, using quantitative MS, we analyzed the proteome of human mast cells infected with different influenza A virus strains at 12h post-infection. Forty-one differentially expressed proteins were identified in human mast cells upon infection by the virulent H5N1 (A/Chicken/Henan/1/04) virus compared to the seasonal H1N1 (A/WSN/33) virus. Bioinformatic analyses confirmed that H1N1 significantly regulates the RNA degradation pathway via up-regulation of CCR4-NOT transcription complex subunit 4, whereas apoptosis could be suppressed by H5N1 via down-regulation of the tumor protein p53 signaling pathway with P≤0.05 at 12h post-infection. The hypoxia-inducible factor-1 signaling pathway of human mast cells is more susceptible to infection by H5N1 than by H1N1 virus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.