Abstract

Many high-value secondary metabolites are assembled by very large multifunctional polyketide synthases or non-ribosomal peptide synthetases encoded by giant genes, for instance, natamycin production in an industrial strain of Streptomyces gilvosporeus. In this study, a large operon reporter-based selection system has been developed using the selectable marker gene neo to report the expression both of the large polyketide synthase genes and of the entire gene cluster, thereby facilitating the selection of natamycin-overproducing mutants by iterative random mutagenesis breeding. In three successive rounds of mutagenesis and selection, the natamycin titer was increased by 110%, 230%, and 340%, respectively, and the expression of the whole biosynthetic gene cluster was correspondingly increased. An additional copy of the natamycin gene cluster was found in one overproducer. These findings support the large operon reporter-based selection system as a useful tool for the improvement of industrial strains utilized in the production of polyketides and non-ribosomal peptides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.