Abstract
We propose a joint source-channel decoding approach for multidimensional correlated source signals. A Markov random field (MRF) source model is used which exemplarily considers the residual spatial correlations in an image signal after source encoding. Furthermore, the MRF parameters are selected via an analysis based on extrinsic information transfer charts. Due to the link between MRFs and the Gibbs distribution, the resulting soft-input soft-output (SISO) source decoder can be implemented with very low complexity. We prove that the inclusion of a high-rate block code after the quantization stage allows the MRF-based decoder to yield the maximum average extrinsic information. When channel codes are used for additional error protection the MRF-based SISO source decoder can be used as the outer constituent decoder in an iterative source-channel decoding scheme. Considering an example of a simple image transmission system we show that iterative decoding can be successfully employed for recovering the image data, especially when the channel is heavily corrupted
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.